土木 土木全般 土木・土木施工管理技士

重心の求め方!図心とのちがいもサクッと解説

重心の求め方

物理や力学では必須となる物体の【重心】

重心とは、物体に働く重力の合力の作用点のこと。

正方形であればど真ん中だし、三角形だと重心は下の方(広がりが大きい方)にズレます。

だけど単純な形の物体ばかりではないですよね。

だから今回は、いろんな物体の重心の求め方について解説していきます。

それではさっそく参りましょう、ラインナップは目次からどうぞ 😀

 

重心の求め方★図心とのちがい

ちなみに、「重心」以外に「図心」という言葉もありますが、ちがいを知っていますか?

ズバリ重心と図心のちがいは、重さを考慮しているかどうかということ!

たとえば、同じ材質で作られた正方形や三角形などの物体は、【重心=図心】となります。

しかしながら、材質が異なる物体、たとえば円の半分が鉄、半分が木でできていた場合、図心は円の中心ですが、重心は鉄(重い)のほうにズレます。

違いはこんな感じなので、豆知識として覚えておくと良いでしょう。

 

はい、少し話がズレましたが…(笑)、重心の求め方についてやっていきましょう。

やり方としては2通り解説していきます。

重心の求め方

  1. 不定形の物体★重心の求め方
  2. 物体形の重心の求め方

 

不定形の物体★重心の求め方

不定形の物体の重心

不定形の物体における重心を求めるには、物体を糸で吊るしてみると分かります。

2箇所ほど選んで不定形の物体を糸で吊るしてみると、糸の張力Fと重力Wは同一作用線上にあるため、重心GはAB上のどこかにあることが分かります。

そして別の点Cに糸をつけて物体を吊るすと、この場合も重心はCを通る鉛直線CD上のどこかにあるはずであるから、直線CDを板の上に書くと、重心はAB、CDの交点として求めることができるわけです。

 

物体形の重心の求め方

つづいては、重心をxy座標で考えていきましょう。

たとえば、質量m₁、m₂、m₃の3枚板が並べられていて、各板の重心G₁、G₂、G₃の座標が与えられているとき、この物体の全体の重心Gを求めてみます。

重心の問題

原点に関する重力のモーメントを考えると、各板の重心に働く重力モーメントの和は、全体の重心に働く重力のモーメントに等しいです。

したがって、重力が-y方向に働いているとき、

-m₁gx₁-m₂gx₂-m₃gx₃=-(m₁+m₂+m₃)gx

よってx=(m₁x₁+m₂x₂+m₃x₃)/(m₁+m₂+m₃)

同様に重力が-x方向に働いているとき、

y=(m₁y₁+m₂y₂+m₃y₃)/(m₁+m₂+m₃)

となります。

つまり、物体系の重心のx(y)座標は、各物体の質量と重心のx(y)座標との積の和を全体の質量で割れば求めることができます。

ここでひとつ、例題を解いてみましょう。

レッツ★チャレンジ

 

【例題(重心の位置)】

重心(物体系の重心の求め方)

同じ材質でできた同じ厚さの正方形の板が2枚あります。

これらを図のようにx、y座標上に並べて置いた時、全体の重心の位置はどこになるか求めなさい。

なお、重心のx、y座標は分数で表してください。

 

【解答】

各板の質量は面積に比例します。

各板の重心は、それぞれの正方形の中心と考えて座標を決め、重心の座用を求める式を適用しましょう。

 

それぞれの正方形板の重心G₁、G₂の座標は、G₁(1,1)、G₂(4,2)です。

小さい正方形の質量をmとすれば、大きい正方形の質量は面積から考えて4mと分かります。

重心の座標(x,y)を求める式を適用すると、

x=(m×1+4m×4)/(m+4m)=17/5

y=(m×1+4m×2)/(m+4m)=9/5

解答:(17/5,9/5)

 

以上です。

関連としては以下の記事も合わせてご確認ください。

ありがとうございました。

-土木, 土木全般, 土木・土木施工管理技士

© 2023 土木LIBRARY Powered by AFFINGER5